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1 SUMMARY 

A strong physically unclonable function (PUF) is a circuit structure that extracts an 

exponential number of unique chip signatures from a bounded number of circuit components. 

The strong PUF unique signatures can enable a variety of low overhead security and 

intellectual property protection protocols applicable to several computing platforms. We 

propose a novel lightweight (low overhead) strong PUF based on the timings of a classic 

processor architecture. A small amount of circuitry is added to the processor for on-the-fly 

extraction of the unique timing signatures. To achieve desirable strong PUF properties, we 

develop an algorithm which leverages intentional post-silicon aging to tune the inter-chip and 

intra-chip signature variation. Our evaluation results show that the new PUF meets the 

desirable inter- and intra-chip strong PUF characteristics, while its overhead is much lower 

than the existing strong PUFs. For the processors implemented in 45nm technology, the 

average inter-chip Hamming distance for 32-bit responses is increased by 16.1% after 

applying our post-silicon tuning method; the aging algorithm also decreases the average 

intra-chip Hamming distance by 98.1% (for 32-bit responses). 

2 INTRODUCTION 

Achieving secure and trustworthy computing and communication is a grand challenge. 

Several known data/program security and trust methods leverage a root of trust in the 

processing units to achieve their goals. Microprocessors and other heterogeneous processing 

cores – which form the kernels of most modern computing and communication – have 

become increasingly mobile, limiting the amount of available energy and resources. 

Traditional security and trust methods based on classic cryptography are often 

computationally intensive and thus undesirable for low power portable platforms. Mobility 

and low power also favor smaller and simpler form factors that are unfortunately known to be 

more susceptible to attacks such as side-channels or invasive exploits. 

There is a search for low overhead and attack-resilient security methods that operate on 

low power computing platforms. Physically unclonable function (PUF) is a promising circuit 
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structure to address the pending security needs of several portable and resource-constrained 

computing platforms. Thanks to the unique and unclonable process variations (PVs) on each 

chip, PUFs can generate specific signatures for each manufactured IC. Technically, PVs 

mainly affect threshold voltage (Vth) or effective gate length (Leff) of the devices in a chip 

[1][2]. These unique device characteristics can be measured by the structural side-channel 

tests such as timing or current of specific test vectors. To ease integration into higher-level 

digital security primitives, it is desirable to transform the measured structural test results to 

digital values. The unclonability and inherent uniqueness properties of signatures makes PUF 

an attractive security primitive choice [3].  

PUF signatures are typically extracted by a challenge-response protocol. In response to a 

challenge (or input), the PUF generates a unique response (or output) that is dependent on the 

specific PV of the underlying chip. PUFs have been classified into two broad categories: 

Weak and Strong. Weak PUFs have a limited number of challenge-response pairs (CRPs), 

which restricts their application scenarios to those requiring a few secret bits such as key 

generation. Strong PUFs generate an exponential number of CRPs from a limited number of 

circuit components. Strong PUFs enable a wider range of security and trust protocols by 

leveraging their huge space of CRPs.  

Although the already proposed strong PUFs have shown promising results [4], their 

application is still limited due to their non-negligible overhead and instability. For example, 

AEGIS secure processor design [5] which realizes a trustworthy hardware platform, has a 

non-negligible hardware overhead of the added logic including the arbiter PUF for supporting 

secure execution. Apart from the PUF logic itself, a large portion of hardware overhead often 

comes from error correction logic. Since PUFs should be able to produce stable outputs under 

various environmental conditions (e.g., voltage and temperature fluctuations), error correction 

logic overhead is inevitable, yet desired to be reduced. Moreover, natural PUFs may have 

undesirable statistical distributions in terms of inter-chip variations, which significantly 

restricts their practical applicability. The statistical distribution becomes even worse when 

spatial correlations between the device characteristics due to process variation (in particular, 

systematic variations) are prevalent across the chips. 

In this report, we introduce an alternative strong PUF architecture, based on a 
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conventional multi-core processor. Our PUF design is a realization of a low overhead and 

stable strong PUF. By leveraging the built-in structures (adders in ALUs) in typical 

multi-core microprocessors instead of building additional delay logic (e.g., a series of 

switches and a series of inverter chains in arbiter PUFs and ring oscillator (RO) PUFs [6], 

respectively), our design realizes a low-overhead and secure strong PUF which can be 

employed to many security applications. A proof-of-concept implementation is demonstrated 

on a two-core architecture where the design is fundamentally based on the delay comparison 

mechanism of arbiter PUFs. To further improve security, reliability, and stability of the PUFs 

as well as make up for possible drawbacks of the two-core PUF design, we also propose a 

systematic post-silicon tuning method for our PUF. Our new algorithm leverages an 

intentional aging method based on one of the most significant circuit aging mechanisms: 

negative bias temperature instability (NBTI) [7]. Our proposed post-silicon aging algorithm 

does not incur any performance overhead in most of the chips by careful consideration of 

selecting the gates that will be intentionally aged. Also, our algorithm greatly improves 

statistical properties of our PUF design in terms of both inter-chip and intra-chip variations. 

Our main contributions include: 

 We propose a low overhead strong PUF design, two-core PUF, which leverages

built-in components in general processor architectures;

 Our new PUF design shows good statistical results, comparable to the previously

proposed strong PUF designs. The hardware overhead of the new PUF is lower

than the previously proposed ones;

 We propose a systematic method to further enhance statistical properties of our

multi-core PUF in terms of both inter-chip and intra-chip variations by leveraging

intentional aging, which complements the possible drawbacks of our PUF design;

 Our simulation results on a two-core architecture prove that our intentional aging

algorithms successfully improve the statistical property of the two-core PUF with

negligible performance overhead in most cases.

The rest of this report is organized as follows. Section 3.1 outlines background 

information for process variation, delay model, and circuit aging mechanism/model. Section 

3.2 explains our two-core PUF design while Section 3.3 introduces our systematic tuning 
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Figure 1: Four process variation map examples generated by quad-tree process variation 
model [1]. The number in the right side of the figures means Z value of Gaussian 

distribution. 

method by leveraging intentional aging to tune the statistical properties of the introduced PUF. 

Evaluation results for the two-core realization and intentional aging algorithms are discussed 

in Section 4. Section 5 provides a brief review of the recent literatures regarding PUFs and 

intentional post-silicon aging methods. Lastly, we conclude in Section 6. 

3 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 Background and preliminaries 

In this section, we provide general background information and preliminaries for process 

variation, delay, and aging mechanism. The background and preliminaries are to make the 

report self-contained and accessible to a broader audience who may not be familiar with 

process variation, delay model, and aging. 

3.1.1 Process variation 

Process variation (PV) generates inherent randomness in silicon structures. PV mainly 

affects threshold voltage (Vth) and effective gate length (Leff) of devices, resulting in various 

side-effects (e.g., delay and power consumption) across chip instances.  

PV can be classified into two broad categories: random and systematic variation. Random 

variation is caused by random dopant fluctuations or random defects in devices. Random 
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variation does not have any spatial correlation between the devices. Unlike random variation, 

systematic variation incurs spatially correlated device fluctuations. It means that the devices 

which are close together have a higher probability to have similar device characteristics than 

those located far away. In contemporary process technologies, both random and systematic 

variation coexist in manufactured chips. 

Figure 1 shows sample Vth distribution maps generated by a quad-tree PV model [1]. Vth 

distribution is shown to be fairly random in a single chip as well as across the chips, while 

similar colors tend to agglomerate together (i.e., Vth distributions are spatially correlated). 

3.1.2 Delay model 

To figure out the Vth-dependent gate delay, we use the delay model described in [8]. The 

gate-level delay model can be represented as follows: 

          (1) 
where ϕt and σ are thermal voltage and subthreshold slope, respectively. There are several 

other key factors that affect gate-level delay: supply voltage (Vdd), threshold voltage (Vth), 

and effective gate length (Leff). Due to process variations, these factors fluctuate, which in 

turn results in delay differences across the gates in chips. Furthermore, circuit aging (it will be 

covered in detail in Section 3.3) also affects gate delay since circuit aging increases Vth of the 

gate. 

3.1.3 Aging model 

Circuit aging is a phenomenon in which performance of the circuits is degraded by the 

circuit usage. This may eventually result in a malfunction of the circuit under intensive 

utilizations or extreme environmental conditions (e.g., extremely high temperature). 

Compared to fresh chips (i.e., not aged), aged chips have relatively lower performance due to 

Vth shift by hot carrier injection (HCI) and negative bias temperature instability (NBTI). Vth 

of devices is continuously increased as those devices are switched or have a high duty cycle, 

resulting in higher delay and lower power consumption.  

In deep submicron process technologies, NBTI is known to be the most threatening aging 

mechanism [7]. Thus, in this work, we consider NBTI as our main aging mechanism. The Vth 
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shift (ΔVth) by NBTI is commonly modeled as follows: 

 (2) 

where Vg and Eα are gate voltage and activation energy respectively. A and B are technology 

dependent constants. As shown in Equation 2, the Vth shift heavily depends on temperature 

(T) and stress time (t). By applying this aging model, one can derive an appropriate stress 

time (t) under a certain temperature (T) to intentionally increase a certain amount of Vth. 

Stress time t is strongly dependent on the signal probability (SP) [9] that represents a 

fraction of time when a gate output stays logic high (1) during the circuit operation. 

Depending on SP of a gate, Vth of the gate will be increased (stress period) or decreased 

(recovery period). Hence, to make the gate intentionally aged, one should carefully determine 

SP of the gate so that it stays in the stress period much more than in the recovery period. 

3.2 Two-core PUF 

3.2.1 Design philosophy and design decisions 

3.2.1.1 Base platform - multi-core microprocessor 

Since our design is fundamentally based on the delay comparison mechanism of arbiter 

PUFs, we need symmetric (homogeneous) structures to generate diverse path delays affected 

by process variations. The symmetric multi-core microprocessor is one of the best design 

candidates since most commodity microprocessors (or microcontrollers) have multiple 

homogeneous cores. Typical strong PUF designs have separate delay circuits to generate PUF 

responses, which incur additional area and power overhead. In contrast, our PUF design 

utilizes built-in components in typical multi-core microprocessors, which minimizes 

additional hardware and communication overhead. Compared to the AEGIS design [5] which 

employs separate switches to implement an arbiter PUF, our design is implementable with a 

much smaller logic overhead. 

3.2.1.2 Path delay source - ALUs 

Our design chooses ALUs as path delay sources. The main reason is that ALUs can accept an 
exponential number of operands, which can also be used as challenge inputs. Moreover, they can 
generate challenge-dependent responses when using add instructions by stimulating the complex 
carry-chains in adder structures. Add instructions can have an 
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Figure 2: The basic structure of our two-core PUF (bitwidth=4-bit). 

exponential number of different operands (264 with 32-bit operands) and our PUF can also 

generate an exponential number of diverse responses depending on the challenge inputs as 

well as disorders in silicon structures. It means our ALU-based PUF design can be classified 

as a strong PUF. 

The other reason for choosing ALUs as path delay sources is that ALUs are built from 

combinational logic in microprocessors and they have delay paths which are comprised of a 

long series of gates. Using the path delay of ALUs also increases the difficulty for an 

adversary  to perform a model building attack. This is because the adversaries should 

perform multiple stages of gate-level delay table lookups and additions to obtain the accurate 

path delays through their PUF model. Determination of carry propagation behaviors also 

introduce a lot of control dependencies, which means it is difficult for adversaries to exploit 

the massively parallel computations in order to acquire a PUF response time comparable to 

that from the real PUF hardware. In this case, one can give a timing constraint (time-bound) 

during the PUF challenge in order to distinguish the real PUF and the modeled PUF. 

Time-bounded authentication by PUF has been introduced earlier [10].  

Our PUF design can be applied to any adder structures, though in this work we build our 

PUF based on ripple-carry adders (RCAs) as a proof-of-concept. In fact, PUFs are broadly 

used in small embedded systems (e.g., sensor nodes or RFIDs) [11][12] or FPGAs 
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[13][14][15] in which RCAs are more beneficial for energy-efficiency than high-performance 

adders such as carry-lookahead adders (CLAs). Note that the first design consideration of 

those embedded systems is typically energy-efficiency, not performance. 

3.2.2 Overall design 

3.2.2.1 PUF design 

Delay-based PUFs [6] exploit delay differences between multiple paths which have 

inherently different delays across chips due to process variations. One may deploy arbiters (or 

counters/comparators in case of ring-oscillator PUFs) to capture the delay difference between 

two delay lines and convert it into a digitized value. In this work, we propose an alternative 

strong PUF design which utilizes already built-in components in a processor architecture as 

our delay lines instead of building separate delay lines (e.g., a series of the switches in arbiter 

PUFs or a series of the inverters in ring oscillator PUFs). 

Although our new strong PUF can be built based on any multi-core processor architecture, 

in the remainder of the report we focus on a two-core proof-of-concept design. Generalization 

to more cores is straightforward. Figure 2 shows a high-level design of our two-core PUF. For 

simplicity, we provide a simple 4-bit two-core PUF design in this figure. Our PUF utilizes 

arithmetic logic units (ALUs) in the multi-core microprocessors/controllers as symmetric 

delay lines. In order to give a challenge input to the PUF, the identical challenge program 

runs in both cores. As shown in Figure 2, two 4-bit operands (operand A and B) are fed into 

each ALU and a 4-bit output (S1~ S4) can be obtained from each ALU. For delay comparison, 

the n-th output lines (Sn) from each ALU are connected to the n-th arbiter (Arbitern). The 

challenge program should start at the same cycle in both cores to guarantee correct PUF 

operations. Note that the arbiters in the circuit layout should be very carefully placed for 

correct operations of the two-core PUF. In addition, the wire lengths from two ALUs to the 

arbiter should be symmetric not to generate biased PUF outputs.  

In our proof-of-concept example, bitwidth of our base microprocessor is 32-bit. Hence, 

each core has a 32-bit ALU. Sn from Core0 and Core1 are connected to the Arbitern, where n 

is 1-32. Thus, we need 32 arbiters for delay comparison. Note that our design can be easily 

extended to 64-bit microprocessors by simply adding 32 more arbiters and connecting the 
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corresponding ALU output ports to those arbiters. 

Figure 3:  Additional logic for XOR obfuscation. 

Figure 4:  Inter-response Hamming distance variations when 10,000 random different 
inputs are fed into the two-core PUF. The x-axis and y-axis corresponds to the Hamming 

distances and probability mass function. 

3.2.2.2 Security enhancement by XOR obfuscation 

Typical security applications desire a high inter-response variation (i.e., high unpredictability). A 
low inter-response variation may make the PUF vulnerable to the modeling attack [16] because 
only a small set of CRPs may enable an accurate modeling of a specific PUF by adversaries. For 

better inter-response variations of our PUF design, one can deploy an additional XOR obfuscation 
step between two different response bits as described in [17]. By paying a little more hardware 

cost, one can perform an XOR operation between 
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Figure 5:  A more detailed structure of our two-core PUF. For simplicity, only one 

arbiter and one temporary register (flip-flop) are shown in the figure. The XOR 
obfuscation logic is drawn in a dashed-line since it is an optional logic. 

 

i-th bit and (i+bitwidth/2)-th bit from a response, as shown in Figure 3. PUF operations 

should be performed twice with different challenges in order to generate a bitwidth-bit 

response, which also incurs timing overhead. Considering the trade-off among the hardware 

cost, performance, and security, one can employ the additional XOR obfuscation step only for 

the case where a high level of security is required.  

As shown in Figure 4, the inter-response variation is greatly improved by adding the 

XOR obfuscation step. Comparing between the case with and without XOR obfuscation, an 

average inter-response Hamming distance is increased from 5.06 bits to 10.64 bits and from 

11.81 bits to 20.53 bits when using 32-bit and 64-bit two-core PUF, respectively. 

3.2.3 Detailed design and architectural modifications 
Delay characteristics in our PUF depend on the carry propagation behavior in the conventional 
ripple-carry adder (which is included in ALUs). As shown in Figure 5, two operands (Ai and Bi) are 
fed into the full adders. Between the full adders, there are carry bits (Ci), which depend on the 
operands (Ai and Bi) and previous carry bit (Ci-1). Depending on 
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Figure 6:  An example challenge program (instruction sequence) for one-time PUF 

query (bitwidth=32-bit). 
 

the carry bit, delay characteristics of the full adder rely on those of either the preceding full 

adders or only the current full adder. These carry propagation behaviors generate an 

exponential number of the signal propagation behaviors in the adder, which eventually 

enables a generation of challenge-dependent PUF outputs. The summation result bits (Si) 

from the ALU (in each core) are connected to the arbiters. Si is also connected to the ALU 

output storage which is already implemented in general processor architectures, though it is 

not shown in Figure 5. The signals from two separate ALUs race to the arbiter, which in turn 

generates a digitized output depending on which delay line is faster. The arbiter output is 

stored to a temporary register (‘PUF Responsei’ in Figure 5). 

As we explained in Section 3.2.2, the response bits may be XOR-ed together (i-th bit ⊕ 

(i+bitwidth/2)-th bit) and the XOR-ed results are finally stored into one half of the final 

output register ($rp: a special purpose register to store the output from the two-core PUF). 

The other half of the output register is filled by performing the PUF operation once again with 

different challenge inputs. After the results are stored to the PUF output register, the 

challenge program can access this register for later usages. 

3.2.4 Challenge procedure 

In order to give challenge inputs to our two-core PUF, we utilize a software-level 

challenge program. Figure 6 shows an example program for a PUF query based on MIPS 

assembly codes. One-time PUF query is performed as follows. Before starting the PUF 

operation, the operands (A and B) are loaded into the registers (Line 1-2 in Figure 6). The 

actual PUF operation is performed by four consecutive addition operations (Line 3-6 in 

Figure 6). Among these four add instructions, the instructions in Line 3 and 5 in Figure 6 are 

used to initialize the ALU output ports to ‘0’ and ‘1’, respectively. In addition, these 

instructions also initialize the signals in the carry propagation chains (from C1 to C32) to ‘0’. 

An example assembly code for one-time PUF query 
1 addi   $1, $0, A   (or from register)      # load operand A to register r1  
2 addi   $2, $0, B   (or from register)      # load operand B to register r2  
3 add    $5, $0, $0                                   # initialization for delay measurement  
4 add    $3, $1, $2                                   # the first add operation - $r3=$r1+$r2 
5 addi   $5, $0, 0xffffffff                          # initialization for delay measurement 
6 add    $3, $1, $2                                   # the second add operation - $r3=$r1+$r2 
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The add instructions in Line 4 and 6 in Figure 6 are to perform an actual PUF operation by 

stimulating the internal gates in the ALUs. The instructions in Line 3-4 and Line 5-6 are 

dedicated to capture 0→1 and 1→0 transitions in the arbiter, respectively. In this work, we 

use dual-trigger latches (arbiters) to capture both up (0→1) and down-transitions (1→0). Note 

that the operating system can block the other program execution during the PUF operation to 

prevent the unintended resource (ALU) sharing which may incur cycle-level discrepancy 

between the two cores. 

3.2.5 Practicality issues 

Since our design utilizes an in-built structure (adder) instead of the specialized circuit for 

PUF, some implementation issues may arise. In this subsection, we address several 

practicality issues of the two-core PUF design. 

3.2.5.1 Intermediate signal fluctuations in the output port 

In the general circuit structures, there could be some ripples (fluctuations of the signal 

before capturing the true signal) in the output port. If the multiple input ports are connected to 

one output port, these fluctuations may occur because signal propagation delays from those 

input ports connected to the output port are likely to be diverse. Therefore, if the path delay 

sources for a delay-based PUF are generated from the general circuit structures, it could be 

problematic due to the ambiguity of when to capture the transition signal in the arbiters (i.e., 

selecting the signal to capture). 

However, in the case of a ripple-carry adder that constitutes the path delay sources in the 

two-core PUF, the signal in the output ports fluctuates at most twice. In most cases, the first 

and second output signal fluctuations result from the operands fluctuations (i.e., when Ai and 

Bi are fed into the full adder) and carry propagations (i.e., a signal transition in Ci-1), 

respectively. Once the carry signal (Ci-1) is converted from 0 to 1, it does not make a 

transition into 0 again within one add operation, which restricts the maximum number of 

possible transitions in the output port of the adder to 2. 

There can be 6 different cases of signal fluctuations captured by the arbiter in our PUF: 0→1→0, 

1→0→1, 0→1, 1→0, 0→0 (not fluctuating from 0), and 1→1 (not fluctuating from 
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Figure 7:  Selection of the valid PUF outputs by using a MUX. 

1). Among them, only the cases of 0→1 and 1→0 generate valid outputs in the arbiters. In the 

other cases, the values generated in the arbiter are ignored. The following subsection 

describes sorting of valid and invalid output bits. 

3.2.5.2 Sorting of the valid and invalid output bits 

In order to make use of only valid output bits, one may need additional MUXes between 

the arbiter and temporary register to generate desired PUF outputs. 

As shown in Figure 7, one can deploy a MUX between the arbiter and temporary register. 

By referring to the control signal, the MUX selects the value either from the arbiter or from 

the temporary register. Control signals can be generated by referring to the summation result 

bit (Si). In the first phase of the PUF query, which corresponds to Line 3-4 in Figure 6, Si is 

directly fed into the control port of the MUX. If Si is ‘1’, the MUX selects the value from the 

arbiter whose output is generated by capturing 0→1 transitions. 

Otherwise, the arbiter output is ignored by selecting the temporary register value in the 

MUX. In contrast, the negation of Si is fed into the control signal of the MUX in the second 

phase (Line 5-6 in Figure 6) to identify the valid arbiter output generated by capturing 1→0 

transitions. 
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Arbiteri

Si or ~Si 1 0

Temporary 
Registeri

From Core0

From Core1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
13 



3.2.5.3 Runtime temperature difference between two cores 

Since our two-core PUF design is based on the structures in different processor cores, 

there may be a temperature difference between two cores which may incur delay differences 

(i.e., delay behavior may be biased). Since thermal behaviors of the two cores are likely to be 

diverse depending on characteristics of the program previously executed before the PUF 

operation, it may make our PUF responses different from the expected responses.  

To deal with different thermal behaviors of two ALUs, we can employ thermal sensors to 

detect the temperature difference between the ALUs. Typical microprocessors already have 

the thermal sensors in their expected localized hotspots [18], which means one does not need 

to deploy additional thermal sensors only for the two-core PUF. To guarantee the PUF 

operation correctness, operating systems (OSes) can read the temperature from the thermal 

sensors before the PUF operation begins. If there is a temperature difference between two 

ALUs, the OS cools the hotter ALU down by enforcing the sleep mode. Though it may incur 

performance overhead due to the sleep period in one core, the performance loss is 

insignificant in the authentication process (i.e., it is not performed in general program runtime, 

but only in authentication program runtime). 

For a design-level solution, one can utilize two ALUs from one core in the case of 

superscalar processors. The ALUs in one core are likely to have similar thermal behaviors due 

to their close physical distance. Otherwise, one can also add redundant ripple-carry adders in 

the microprocessor, which will yield a little more hardware overhead, though our PUF has 

only a small implementation overhead (a detailed analysis on the hardware overhead will be 

described in the following subsection). 

3.2.6 Implementation overhead 

Typical microprocessors or microcontrollers already have several cores or ALUs to 

support multi-programmed/multi-threaded workloads or higher instruction-level parallelism 

(ILP). Our PUF design realizes a strong PUF with much lower hardware overhead by 

leveraging built-in components. Assuming one builds a two-core PUF based upon already 

built-in ALUs in a 32-bit processor, an additional hardware cost is only arbiters, MUXes, and 

temporary storage for 32-bit data. If one needs an additional XOR obfuscation stage, only 

additional XOR gates are to be added. Even if one builds a two-core PUF without an 
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underlying processor architecture, our PUF design only needs 96 2-to-1 MUXes (or 288 

NANDs), 128 XOR gates, 32 arbiters, and 32 flip-flops including the logic shown in Figure 7. 

Compared to the conventional arbiter PUF (32-input/32-output), which needs 2048 2-to-1 

MUXes and 32 arbiters, our PUF design incurs far less hardware cost. As a result, our PUF 

design yields much lower area/power overhead compared to the conventional strong PUF 

designs. 

3.3 Post-silicon tuning of two-core PUF via intentional aging 

3.3.1 High-level description of our post-silicon tuning 

3.3.1.1 Rationale 

Though our two-core PUF provides fairly good statistical distributions in general cases 

(see Section 4.2), they do not necessarily produce good statistical properties in practice. In this 

case, one may have to discard manufactured PUF chips due to the low quality statistical 

properties, which results in yield losses of the chips. 

The two possible problematic conditions for our manufactured PUFs include: 

 Low inter-chip variations: This case may often happen (particularly for two-core

PUFs) because the two ALUs in each core are not close together, which may result

in systematic bias between two ALUs across the chip instances [19]. It can also be

incurred by suboptimal layouts (i.e., asymmetric placement of the arbiters and

different wire lengths between each ALU to the arbiters) as well as inherent process

variation. In this case, regardless of the process variation in chips, arbiter outputs

would be biased to either ‘0’ or ‘1’, which in turn results in losing the uniqueness of

the PUF instances (i.e., reduced randomness among the PUF outputs from different

chip instances).

High intra-chip variations: Delay-based PUFs are often susceptible to various environmental 
conditions. PUFs should be able to produce stable outputs even under extreme environmental 
situations. Fluctuating environmental conditions include voltage/temperature variation and 
arbiter metastability. Since circuit delay is heavily dependent on the voltage/temperature 
variations, the PUF output might also be diverse under voltage/temperature variations. Arbiter 
metastability is another source
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Figure 8:  i-th full adder structure in the two-core PUF. 
 

of PUF output instabilities. In general arbiter-based delay PUFs, if the delay difference 

between two delay lines connected to one arbiter is less than the setup and hold time of the 

arbiter, the PUF output is not stable and may fluctuate depending on environmental 

conditions. 

Manufactured PUF instances should avoid those two conditions that definitely degrade 

quality of the PUFs. In this work, we introduce a systematic intentional aging method to make 

the statistical quality of the two-core PUF much better in terms of both inter- and intra-chip 

variations. Our aging method complements the possible drawbacks of our PUF design. 

3.3.1.2 Strategy 

Since the aging process is a one-way process and may degrade a circuit’s performance, a 

careful intentional aging strategy is desired. In particular, our PUF design leverages in-built 

structures as our path delay sources (i.e., not deploying additional dedicated circuits). In this 

case, aging may in turn degrade the entire circuit performance. In pipelined processors, 

though the execution stage where a processor performs ALU operations [20] does not 

typically lie in the critical path [21], there will be a few chips which do have their critical path 

in the execution stage and may be adversely affected by increased ALU delay after the 

intentional aging process. Our aging strategy is to apply intentional aging only to the gates 

which do not lie in the critical path of the adder. The reason for this is to guarantee that the 

differences in delay between the critical path and non-critical paths are large for all 
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implementations of the adder. This increased difference in delay between the two paths 

improves the reliability of the PUF in the context of environmental variations. 

Figure 8 shows the structure of a full adder which is a substructure of our two-core PUF. 

The critical path of the entire adder is a carry propagation chain (NAND2 and NAND3 gates), 

which implies that the XOR1, XOR2, and NAND1 gates, except those in the last full adder 

(FA), do not affect the critical path delay. In summary, the XOR1, XOR2, and NAND1 are 

safe to apply the intentional aging while the NAND2 and NAND3 gates might be very 

sensitive to the circuit’s entire performance. Thus, to minimize side-effects from the 

intentional aging, we selectively apply intentional aging only to XOR1, XOR2, and NAND1 

gates in the full adder. 

A careful selection of the full adders that must be intentionally aged is also important. In 

our PUF design, the n-th bit response is closely related to delay characteristics of the n-th full 

adder. Our strategy is to utilize statistical metrics to determine which full adders have bad 

statistical properties. First, we figure out which PUF output bits show a relatively bad 

statistical quality by investigating its output behaviors (i.e., the probability of occurring ‘0’ 

and ‘1’ in each PUF output bit). And then, we choose the full adders which correspond to 

those PUF output bit. Our main targets for intentional aging algorithms are XOR1, XOR2, 

and NAND1 gates in the selected full adders. 

3.3.1.3 Figuring out the input vectors for aging 

Figure 9 shows how to generate input vectors for intentional aging. One input vector is an 

operand A=0xffffffff (unsigned) and B=0x00000000 (unsigned) with an initial carry bit C0=1 

(see Figure 5), assuming 32-bit two-core PUF is used. The first input vector (two operands) is 

stationary regardless of which full adder (FA) is aged. For the other input vector, operand A is 

an operand of all ‘0’ (A=0x00000000). The operand B of the second input vector has different 

bit sequences depending on which full adders are intentionally aged. The i-th bit of the 

operand B is ‘1’ if the i-th FA must be aged and the rest of bits are all ‘0’. For example, let us 

suppose that the first and third FA should be aged. In this case, one can make the operand B 

of the second input vector as 0x00000005 (i.e., within the 32-bit operand, only the first and 

third bit are ‘1’ and all other bits are ‘0’). Note that the initial carry bit of the second input 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
17 



 

 
Figure 9:  Input vector generation for our intentional aging process. 

 

vector should be ‘0’ (C0=0). For our aging process, the first and second input vectors are fed 

into the two-core PUF alternately. 

Our aging input vector generation leverages the stress and recovery mechanism of CMOS 

NBTI [22]. When a gate has an output of ’1’, the current passes through the PMOS devices, 

which means the gate is in the stress period of NBTI. Otherwise, the gate is in the recovery 

period. Thus, to age a gate, one should enforce the gate in the stress period more than the 

recovery period.  

As we explained in Section 3.3.1.2, our goal is to age only XOR gates and NAND gate in 

the full adder. The first input vector enforces all of the full adders to reside in the state 5 in 

Table 1. In this cycle, XOR1, NAND1, and NAND3 gates are in the stress period (i.e., gate 

output=1) while XOR2 and NAND2 gates are in the recovery period (i.e., gate output=0). In 

the next cycle, by using the second input vector, the full adders which must be aged are 

enforced to be in the state 2 in Table 1 while the other full adders are in the state 0. 

Table 2 shows the ratio between the stress and recovery period when our first and second 

aging input vector are alternately fed into the two-core PUF. As a result, only XOR1 and 

NAND1 gate are aged while the other gates are minimally affected because the stress and 

recovery period occur alternately. Though it seems that NAND1 gates are aged far more than 

the other gates, NAND1 gates hardly affect output delays since they are neither directly 

connected to the paths to the arbiters nor placed on the critical path of the adder. 

NAND2 and NAND3 gates may also be a little aged together due to the partial recovery 
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mechanism of NBTI. In the case of stress period=50% and recovery period=50% (i.e., duty 

cycle=0.5), the gate is aged 2~3 times less than the gate with a stress period of 100% [7]. 

However, assuming that one increases Vth by 0.1V via our aging process, the entire impact 

on the critical paths of the adder is only 7.53% in the worst case. Note that increasing Vth by 

0.1V is fairly sufficient to obtain a good statistical property of our PUF (detailed results will 

be shown in Section 4.3). It means that our aging process hardly affects the entire circuit 

performance because most processors have their critical path in the cache access (MEM stage) 

or register file access pipeline stage (RF/ID stage) [21]. Note that there is no additional 

hardware overhead required only for our intentional aging which can be performed with the 

specialized input vectors or programs. 

During our aging process, the wires as well as logic gates would be aged. However, the 

NBTI aging mechanism mostly affects PMOS devices [7], which means the aging in wires is 

negligible compared to the aging in the logic gates. 

TABLE 1  A Truth Table Of Full Adders 

State Ai Bi Ci-1 XOR1 XOR2 NAND1 NAND2 NAND3 

0 0 0 0 0 0 1 1 0 

1 0 0 1 0 1 1 1 0 

2 0 1 0 1 1 1 1 0 

3 0 1 1 1 0 1 0 1 

4 1 0 0 1 1 1 1 0 

5 1 0 1 1 0 1 0 1 

6 1 1 0 0 0 0 1 1 

7 1 1 1 0 1 0 1 1 

 
 

TABLE 2  Stress/recovery period ratio and duty cycle of each gate in a full adder (FA) 

 FA in which aging is applied FA in which aging is not applied 

 Stress Period Recovery Period Duty cycle Stress Period Recovery Period Duty cycle 

XOR1 100% 0% 1 50% 50% 0.5 

XOR2 50% 50% 0.5 0% 100% 0 

NAND1 100% 0% 1 100% 0% 1 

NAND2 50% 50% 0.5 50% 50% 0.5 

NAND3 50% 50% 0.5 50% 50% 0.5 
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For efficient intentional aging in the post-silicon stage, designers or manufacturers can 

perform the intentional aging process with appropriately high temperature environment. We 

also note here that the high temperature environment used in our intentional aging process 

should not incur any break down in devices, but only accelerate aging process. 

3.3.1.4 Sample spaces to measure the statistical properties 

There are two types of the sample spaces which are used in our aging algorithms: 

inter-chip sample space and intra-chip sample space. 

 inter-chip sample space: it is composed of the PUF responses from different chip 

instances when the same challenge input is fed. Note that one can feed a large 

number of challenges to generate a representative and sufficiently large number of 

inter-chip sample spaces. In this work, we give 1,000,000 random challenge inputs 

to the PUF instances (i.e., we generate 1,000,000 inter-chip sample spaces). 

 intra-chip sample space: the bit samples are the PUF responses from the same chip 

with the same challenge under different environmental conditions. The sample space 

is composed of 11 PUF responses and each response is extracted under different 

environmental conditions. There are three factors considered to generate different 

environmental conditions: voltage variation, temperature variation, and arbiter 

metastability. For generating 11 different environmental parameters, the voltage and 

temperature are randomly selected within the range of 1.0V-1.2V and 253K-393K, 

respectively. Arbiter metastability is also considered as a source of unstable PUF 

responses. For high representativeness of the samples, 1,000,000 different intra-chip 

sample spaces are generated with 1,000,000 different challenge inputs for each chip 

sample. 

3.3.2 Aging algorithm to increase inter-chip variations 

To increase inter-chip variations, one should make the probability occurring ‘0’ and ‘1’ as 

close as possible for each response bit across PUF instances to minimize a bias in the 

responses. For i-th PUF response bit, i-th full adder (FA) mainly contributes to the delay to i- 

th arbiter. Thus, in the case that one tries to change the i-th bit response, one can selectively 

apply the aging process to the i-th full adder. Depending on the occurring frequency of 0 and 
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1 for each response bit in the inter-chip sample spaces, one can determine which core’s i-th 

full adder must be aged. 

Alg. 1 shows a detailed algorithm to make inter-chip variations of the two-core PUFs 

higher. For the input of this algorithm, the statistical distribution of the PUF responses in the 

inter-chip sample spaces is required. To determine which core’s full adders must be aged, our 

algorithm investigates the Pj which represents probability of occurring ‘1’ in j-th bit in the 

inter-chip sample spaces (Line 4 in Alg. 1). In this work, when updating the PUF statistical 

distributions with the generated inter-chip sample spaces, we use 1,000,000 random challenge 

programs which are newly selected for each iteration. Thus, the bias towards a certain set 

of challenges (i.e., 1,000,000 challenges used for updating the statistical distributions) is 

removed. If Pj is greater than 0.6, it means that the j-th FA in the core0 tends to be faster than 

that in the core1. Thus, our algorithm applies the aging process to the j-th FAs in Core0. Our 

algorithm increases Vth of the XOR1 gate in the FA by 0.01V for each iteration of the 

intentional aging process. The input vectors for our aging process are alternately fed into the 

PUF until the Vth of the XOR1 gate is increased by 0.01V. By using Equation 2, one can 

obtain an appropriate stress time to increase Vth by 0.01V under a certain temperature. The 

input vector sequence for selectively applying the aging process to a specific FA is already 

explained in Section 3.1.3. On the other hand, if Pj is less than 0.4, our algorithm applies the 

aging process to j-th FAs in Core1 to make Core1’s FAs slower than before. This process is 

iterated k times and the number of iterations (k) can be determined by considering the degree 

Alg. 1: Algorithm for intentional aging to N-bit two-core PUF to increase 
inter-chip variations. 
Input: Statistical distribution of the PUF results in the inter-chip sample space 
1  for i←1 to k // Main loop 
2    Update PUF results and statistical distribution; 
3    for j←1 to N 
4      Pj←prob. of occurrence of ‘1’ in j-th bit within the responses across 
different chip instances; (i.e., in the inter-chip sample spaces); 
5        if(Pj ≥ 0.6) 
6          Apply aging (Vth increment of 0.01V) to j-th FA in Core0; 
7        if(Pj ≤ 0.4) 
8          Apply aging (Vth increment of 0.01V) to j-th FA in Core1; 
9    endfor 
10 endfor 
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of the delay bias. Note that this algorithm is applied globally to the chips. 

3.3.3  Aging algorithm to reduce intra-chip variation 

To reduce intra-chip variation, one should make the delay difference between two delay 

lines (which are connected to the arbiters) larger so that the PUF can be stable under a certain 

degree of the environmental variabilities. By doing so, we try to make the probability of 

occurrence of unstable PUF responses as low as possible. 

Alg. 2 describes our algorithm to reduce intra-chip variations. With a given or updated 

statistical distribution of the PUF responses in intra-chip sample spaces (as in Alg. 1, one 

million random challenges which are newly chosen for each iteration are used), our algorithm 

applies the aging process to make the PUF responses more stable. For j=1 to 32, if Pj is 

greater than 0.5 (i.e., Core0’s j-th FA tends to be faster than Core1’s j-th FA), then our 

algorithm ages the j-th FA in Core1 to make the delay difference between the FAs in Core0 

and Core1 larger than before. Otherwise, our algorithm ages j-th FAs in Core0. Similar to Alg. 

1, Vth of the XOR1 gate in the FA is increased by 0.01V for each iteration and the main loop 

is repeated by k times. Unlike Alg. 1, Alg. 2 is individually applied to each chip. 

Applying the intentional aging by using our algorithms may incur a huge post-processing 

cost. In case that the huge post-processing overhead is expected, one can selectively apply the 

Alg. 2 to the PUF chips of which stability does not meet a quality standard, which can be 

determined by PUF designer or manufacturer considering the field usage of the PUFs. There 

Alg. 2: Algorithm for intentional aging to N-bit two-core PUF to reduce 
intra-chip variation. 
Input: Statistical distribution of the PUF results in the intra-chip sample space 
1  for i←1 to k // Main loop 
2   Update PUF results and statistical distribution; 
3   for j←1 to N 
4      Pj←prob. of occurrence of ‘1’ in j-th bit from the responses in the 
sample space across various environmental parameters; (i.e., in the intra-chip 
sample spaces); 
5     if(Pj ≥ 0.5) 
6        Apply aging (Vth increment of 0.01V) to j-th FA in Core1; 
7      else 
8        Apply aging (Vth increment of 0.01V) to j-th FA in Core0; 
9    endfor 
10 endfor 
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can also be an efficient trade-off between the post-processing cost and PUF quality standard 

(or yield of the manufactured PUF), though analyzing the detailed trade-off between them is 

out of scope of this work. 

3.3.4  Reliability and security discussions on aging 

For our PUF design, there are several security, reliability, and maintainability issues on 

aging: malicious usage of our aging algorithm and natural aging effect. In this subsection, we 

address those issues and introduce possible countermeasures. 

3.3.4.1  Malicious usage of our algorithm 

An adversary may try to make the PUF responses of a certain chip as he or she desires by 

using our algorithms’ capability of changing the PUF responses. For example, the adversary 

can try to use our aging algorithm in the opposite way, which may make the statistical 

property of our PUF worsened. One possible way to prevent this attack is to deploy aging 

sensors [23][24], which can detect how much the circuit is aged by measuring the frequency 

of ring oscillators or delay elements. If the aging sensor detects a certain degree of the aging 

within a short time period, the OS can enforce the PUF to reside in a sleep mode so that the 

ALU can be cooled down and stop executing the malicious code. As another solution, already 

employed thermal sensors can also detect the execution of the malicious code for malicious 

aging. This is because the malicious code which tries to age the PUF by an adversary should 

intensively access the ALU, which makes it significantly hot. It triggers dynamic thermal 

management (DTM) to prevent thermal emergency in a microprocessor [18][25]. The DTM 

also cools down the ALU by engaging the coercive sleep mode in the microprocessor. Since 

the NBTI aging heavily depends on the circuit temperature, cooled ALUs are affected little 

from the malicious aging by the adversary. 

3.3.4.2  Natural aging and recovery due to the NBTI 

The natural aging may affect the PUF responses. However, there are two important 

reasons which support the claim that our PUF design is safe against the natural aging effect. i) 

Our PUF is based on the delay comparison between two symmetric delay lines by using the 

arbiter. In real usage cases, both paths are generally aged together, so that the PUF responses 

are not likely to be affected by natural aging effects. ii) NBTI mechanism has a recovery 

period (i.e., increased Vth due to the aging is recovered to a certain extent) when PMOS 
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devices are not used. It means that the PUF structure may not be aged too much under the 

assumption that the most of the gates have a duty cycle of 0.5. For a safeguard mechanism, 

one can also deploy the aging sensors as introduced in the previous subsection, in order to 

detect the natural aging as well as malicious aging. 

In addition to the natural aging, increased Vth due to our intentional aging may be 

recovered by the NBTI recovery. In this case, the improved statistical property of the PUFs 

may be worsened again. However, the recovered Vth by the NBTI recovery cannot reach the 

original Vth due to the partial recovery of the NBTI [7]. In case that a high degree of natural 

NBTI recovery is expected, one can make that the partial recovery from NBTI hardly affects 

the PUF responses (e.g., further conducting the aging process considering the expected partial 

recovery). Note that quantifying the impact of NBTI recovery and investigating a detailed 

mechanism for the aging process considering the NBTI recovery are out of the scope of this 

work. We leave them as our future work. 
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4.  RESULTS AND DISCUSSION 

4.1  Evaluation setup 

Our evaluation results are based on an accurate gate-level delay simulation framework. 

We gave a threshold voltage (Vth) variation to each chip instance. Though, in the case of Vth, 

random variation is known to be more remarkable than systematic variation [1], Vth 

distributions are also spatially correlated [2][21][26]. Hence, we used a quad-tree process 

variation model [1] to precisely model both the random and systematic variation of the Vth. 

Assuming Vth distributions in a chip follow the normal distribution N(μ, σ2), we considered 

three different process variation severities: 3*σ/μ =Vth*20%, Vth*30%, and Vth*40%. We 

generated 1,000 different chip instances for our Monte Carlo simulations for each process 

variation severity. Our ALU (adder) model is based on the Xilinx fast ripple-carry adder 

model [27]. The placement information is used to map Vth parameters (generated by [1]) to 

each gate in a chip. We obtained a nominal gate delay from HSPICE circuit simulations with 

45nm process technology. By using Equation 1, we figured out delay of each gate according 

to Vth of that gate. Note that we exclude the simulation results when the additional XOR 

obfuscation step is deployed since it is not essential but optional in our PUF design. 

4.2  Statistical results for two-core PUFs 

4.2.1  Inter-chip variations 

In this subsection, we present inter-chip variation results of our two-core PUF for both 

32-bit and 64-bit ALUs. To quantify the inter-chip variations, we measure inter-chip 

Hamming distances between different PUF instances when we feed the same challenge 

program to both cores. We show the average inter-chip Hamming distance results from 

1,000,000 different challenge inputs (challenge programs). 
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Table 3 shows the inter-chip Hamming distances (mean and standard deviation) across 

three difference process variation severities. As Table 3 suggests, uniqueness of our two-core 

PUF is comparable to the existing strong PUF designs [4]. On average, the inter-chip 

Hamming distance is 12.35 bits (38.61% - ideally 50%) within the 32-bit responses. 

Regardless of process variation severities (3*σ/μ =Vth*20%, Vth*30%, and Vth*40%), the 

inter-chip variations are shown to be around 38%. It means that our two-core PUF can be a 

low-overhead alternative for conventional strong PUFs. 

We also provide the results for 64-bit two-core PUF design since many commodity 

microprocessors are using the 64-bit datapath. Across three process variation severity cases, 

the average inter-chip Hamming distance is 22.51 bits (35.16%). 

4.2.2  Intra-chip variations 

In this subsection, we present intra-chip variation results under various environmental 

circumstances. We consider three cases that can affect the intra-chip variations: voltage 

TABLE 3 
Average inter-chip Hamming distance results 

Mean 

3*σ/μ Vth*20% Vth*30% Vth*40% 

32-bit output 12.38 (38.69%) 12.21 (38.16%) 12.48 (39.00%) 

64-bit output 22.67 (35.42%) 21.92 (34.25%) 22.92 (35.81%) 

Standard deviation 

3*σ/μ Vth*20% Vth*30% Vth*40% 

32-bit output 2.76 2.75 2.76 

64-bit output 3.83 3.80 3.84 

TABLE 4 
Average intra-chip Hamming distance variation results under 1,000,000 different 

challenge inputs. 

Mean 

3*σ/μ Vth*20% Vth*30% Vth*40% 

32-bit output 3.59 (11.22%) 2.77 (8.66%) 1.36 (4.25%) 

64-bit output 6.76 (10.56%) 5.06 (7.91%) 3.31 (5.17%) 

Standard deviation 

3*σ/μ Vth*20% Vth*30% Vth*40% 

32-bit output 1.79 1.59 1.14 

64-bit output 2.46 2.16 1.77 
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variation, temperature variation, and arbiter metastability. 

Table 4 shows intra-chip variation results. To estimate the intra-chip variations, we first 

give the same challenge to the same chip by 11 times and collect the PUF responses. Each of 

11 PUF operations is performed under random environmental conditions (the voltage and 

temperature are randomly selected within the range of 1.0V-1.2V and 253K-393K, 

respectively). Arbiter metastability also generates some noise to PUF responses. Intra-chip 

Hamming distance results are collected under 1,000,000 different challenge inputs and also 

averaged out to obtain the final results. 

As shown in Table 4, the average intra-chip Hamming distances are 2.58 bits and 5.04 

bits (8.05% and 7.88% - ideally 0%), in the case of 32-bit ALUs and 64-bit ALUs, 

respectively. Since our PUF design is based on the delay comparison mechanism of the 

arbiter, most of the intra-chip variations are due to the arbiter metastability. One thing worth 

noting is the intra-chip Hamming distances under more severe process variation scenarios 

tend to be lower. This is because the delay differences between two symmetric delay paths 

tend to be higher under severe process variations, which makes our PUF more robust under a 

certain level of the environmental variations. 

Though the intra-chip Hamming distances under less severe process variation scenarios 

may seem to be non-negligible, it can be alleviated by our post-silicon intentional aging 

algorithms. The post-silicon tuning results for intra-chip variation reduction will be presented 

in Section 4.3.2. 

4.3  Statistical results for post-silicon tuning 

4.3.1  For inter-chip variation improvement 

To figure out the effectiveness of our proposed intentional aging method, we performed a 

Monte Carlo simulation with 1,000 different chip instances. The process variation severity is 

TABLE 5 
Average inter-chip Hamming distance results before and after our intentional aging 

process. 

Normal case Extreme case 

Before aging 12.47 (38.96%) 5.79 (18.10%) 

After aging 14.47 (45.23%) 13.58 (42.45%) 
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3*σ/μ = Vth*30%. In this subsection, we provide two different practical cases to apply our 

intentional aging method to increase interchip variations. The first is a normal case where the 

delay of two cores is not significantly biased. The other is an extreme case in which the delay 

of two cores is significantly biased [19]. For the extreme case, after generating the chip 

instances using the quad-tree process variation model, we gave an additional 5% delay bias 

effect between two cores in each chip instance so that the ALU in one core tends to be faster 

than that in the other core. 

Table 5 shows average inter-chip Hamming distance (HD) results before and after our 

intentional aging process. Before applying our intentional aging process, the baseline (before 

aging) inter-chip HD is 12.47 (12.47/32=38.96% - 50% is an ideal case) and 5.79 

(5.79/32=18.10%) for the normal and extreme case, respectively. It is quite natural that the 

inter-chip HD for the extreme case is lower than that for the normal case because it has a 

higher possibility not to have unique responses but to have biased responses across the 

different chip instances. For the normal case, after applying Alg. 1 with k=20, the inter-chip 

HD becomes 14.47 (14.47/32=45.23%), which means uniqueness of the PUF responses across 

different chips is significantly improved. For the extreme case, the average inter-chip HD 

becomes up to 13.58 (13.58/32=42.45%). It implies that our intentional aging method makes 

the chip instances practically usable even in the case that a significant delay bias exists 

Fig. 10. Average inter-chip Hamming distance results with regard to the number of 

iterations (k) in Alg. 1. 
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between two cores due to systematic process variations. 

To see how one can determine the parameter k in practice, we also show a trend of the 

inter-chip HD as we increase k in Figure 10. After 7 iterations (i.e., Vth increase by at most 

0.07V via our intentional aging), the inter-chip HD is almost saturated. In other words, only 

with 7 iterations one can gain the maximum obtainable uniqueness for a certain set of the chip 

samples. 

4.3.2  For intra-chip variation reduction 

Figure 11 shows effectiveness of Alg. 2. Before applying Alg. 2, the average intra-chip 

Hamming distance (HD) is 3.77 (3.77/32=11.78% - 0% is an ideal case), which implies there 

exist Hamming distances of 3-4 bits upon the repetitive measurements with the same 

challenge. However, after applying Alg. 2 to each chip with k=20, the intra-chip HD is 

reduced to 0.07 (0.07/32=0.26%), which implies a significant the intra-chip HD reduction. 

With only 3 iterations of our algorithm (i.e., Vth increase by at most 0.03V via our intentional 

aging), one can get the intra-chip HD values below 1.0, which implies that there is an average 

of at most only one-bit Hamming distances within the 32-bit responses upon the repetitive 

measurements. In this case, one can deploy a light-weight error correction method (e.g., 

single error correction double error detection) instead of the high overhead error correction 

methods such as BCH coding [5][6]. If the PUF designers want to make the PUF responses in 

terms of intra-chip variations more robust, it is possible to apply a higher k in Alg. 2. 

Fig. 11. Average intra-chip Hamming distance results with regard to the number of 

iterations (k) in Alg. 2. 
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Figure 12 shows the average intra-chip HD per bit results within the 32-bit responses 

before and after applying Alg. 2 with k=20. It is measured by slicing the 32-bit response into 

each bit and measuring the HD for each bit i of the PUF responses in the intra-chip sample 

spaces. Though the average intra-chip HD per bit depends on the delay characteristics of each 

chip, after applying Alg. 2, the intra-chip HD of bit i becomes under 0.01 for all is (1-32), 

which means the bit responses become very stable across different environmental conditions. 

On average, our algorithm reduces the average intra-chip HD of bit i from 0.11 to 0.002 after 

20 iterations of the intentional aging process, which means the average intra-chip HD per bit 

is reduced by 98%. 

5.  RELATED WORK 

5.1  Physically Unclonable Functions (PUFs) 

A plausible method for unique and unclonable identification of devices and objects is 

based on the inherent and hard to forge randomness or disorder of their underlying physical 

fabrics. To overcome the exposure associated with storage of digital keys, a novel class of 

secret embedding, storage, and extraction widely known as PUFs has emerged. The secret 

generation and storage mechanisms in PUFs are based on the inherent disorder present in the 

silicon [3]. Memory-based PUFs, which are a type of weak PUFs [4][28][29], are typically 

used for secure key storages. Arbiter PUFs [6], that are known to belong to the strong PUF 

family, are composed of a series of switches (MUXes), which change delay paths according 

to the input challenge bits. For better statistical properties and to make the structure resilient 

 

Fig. 12. Average intra-chip Hamming distance of bit i (i=1-32) results within 32-bit 

responses before and after applying Alg. 2 with k=20. 
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to modeling attacks, different PUF outputs can also be XORed [30]. Ring-oscillator (RO) 

PUFs [6] are composed of a long chain of inverters. Glitch PUFs [31] exploit a glitch 

propagation variability along the delay paths. In [5] and [32], the PUF structures combined 

with microprocessor architecture are proposed. Apart from PUF design studies, there exists 

work in literature on detailed analysis [33][34], formal models [35], and modeling attacks on 

PUFs [16].  

In this work, we proposed a new strong PUF design, which is fundamentally based on 

delay comparison between two symmetric paths by using arbiters. Our PUF design is 

instruction-controlled, and leverages built-in components, i.e., arithmetic logic unit (ALU) in 

a classic processor architecture for path delay sources instead of deploying separate delay 

sources as presented in [6].  

5.2  Leveraging aging to PUFs and circuits 

Circuit aging is a common mechanism by which performance of the circuits is degraded 

as they are used. Though a large body of work for aging resilience in circuit structures has 

been studied, in this work, we focus on the case where one leverages the intentional aging of 

the PUFs for tuning the statistical properties of the PUF responses. Reference [36] provided 

the first set of formal properties for the statistical distribution of the PUF responses in terms 

of the inter-chip and intra-chip variation. 

A hardware aging-based software metering technique [37] precisely tracks the software 

usage by feeding the test vectors to the specific circuit. Device aging-based PUF design [38] 

leverages aging mechanism to shape the PUF responses. It can also be used for a graduation 

of the PUF responses which is robust to PUF modeling attacks or for better statistical 

properties of the PUF by changing the PUF responses. Public PUFs (PPUFs) [39][40][41] 

leverage the aging to shape the PUF responses. The main purpose of applying aging to PPUFs 

is to make the responses of the PUFs, which are shared among the trusted parties, identical for 

low-power consumption and fast authentication. Leveraging intentional aging for generating 

stable outputs in SRAM (static random access memory) PUFs was also proposed [42]. 

Negative bias temperature instability (NBTI) aging mechanism enables a more stable output 

generation from SRAM PUFs. 

To the best of our knowledge, our work is the first to introduce systematic aging of a 
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strong PUF (two-core PUF) to get a better statistical distribution of PUF responses (i.e., 

signatures) both in terms of inter-chip and intra-chip variations. 

6. CONCLUSION

We proposed a two-core strong PUF architecture. Our design is low overhead and robust

to systematic variations because of its inherently symmetric construction. To improve the 

statistical distribution of the PUF outputs, we devised a novel intentional aging algorithm 

which makes the PUF instances much more secure and stable in terms of both inter- and 

intra-chip variations. Our evaluation results suggest that our proposed algorithms greatly 

improve the quality of the PUF challenge-response statistical properties. By applying the 

algorithm to increase inter-chip variations, one can obtain the PUF responses which have 

higher uniqueness across different chip instances. Also, the algorithm to reduce intra-chip 

variations make our PUF much more robust to the environmental fluctuation, which also 

enables a deployment of low overhead error correction schemes for robustness and stability of 

our PUFs. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

ALU Arithmetic Logic Unit 
CRP Challenge-Response Pair 
DTM Dynamic Thermal Management 
FA Full Adder 
HCI Hot Carrier Injection 
HD Hamming Distance 
ILP Instruction-Level Parallelism 
Leff Effective gate length 
MEM Memory 
MUX Multiplexor 
NAND Negated AND 
NBTI Negative-Bias Temperature Instability 
Oses Operating Systems 
PMOS P-type Metal-Oxide-Semiconductor 
PPUF Public Physically Unclonable Function 
PUF Physically Unclonable Function 
PV Process Variation 
RCA Ripple Carry Adder 
RF/ID Register File/Instruction Decode 
RFID Radio-Frequency IDentification 
RO Ring Oscillator 
SP Signal Probability 
SRAM Static Random Access Memory 
Vdd Supply voltage 
Vth Threshold voltage 
XOR Exclusive OR 
ΔVth Vth shift 
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